首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1038篇
  免费   78篇
  国内免费   23篇
  2023年   7篇
  2022年   6篇
  2021年   20篇
  2020年   11篇
  2019年   23篇
  2018年   31篇
  2017年   29篇
  2016年   31篇
  2015年   61篇
  2014年   66篇
  2013年   80篇
  2012年   115篇
  2011年   88篇
  2010年   53篇
  2009年   35篇
  2008年   56篇
  2007年   53篇
  2006年   53篇
  2005年   40篇
  2004年   28篇
  2003年   41篇
  2002年   37篇
  2001年   19篇
  2000年   26篇
  1999年   10篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1994年   3篇
  1992年   8篇
  1991年   11篇
  1990年   7篇
  1989年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1978年   7篇
  1976年   2篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1971年   5篇
  1967年   2篇
  1966年   3篇
  1965年   3篇
  1961年   2篇
  1909年   2篇
  1907年   2篇
排序方式: 共有1139条查询结果,搜索用时 788 毫秒
41.
The changes in serum leptin levels during growth hormone (GH) treatment were studied in 27 children, 17 with GH deficiency (GHD), 10 with idiopathic short stature (ISS), and 9 with Prader-Willi syndrome (PWS). Within 1 month of GH treatment, serum leptin levels decreased by 40% in the GHD children (p < 0.01). There was no significant change in serum leptin level in the children with ISS. In children with PWS, the mean serum leptin level decreased by almost 60% after 3 months of treatment (p < 0.001). Thereafter, no further decline was observed in any of the 3 groups. Changes in body composition became evident first after the 3 months of treatment. In the GHD children, the BMI was unchanged while the mean body fat percentage was 2.7% lower after 1 year of GH treatment (p < 0.05). In the ISS children, neither BMI nor body fat percentage were significantly changed during treatment. The PWS children exhibited a significant decrease in BMI after 6 months of GH treatment without any further change during the remaining period of treatment. In this group, the mean body fat percentage decreased from 42 +/- 2.4 to 28 +/- 2.2% after treatment (p < 0.001). The finding that the fall in leptin occurs before changes in body composition become detectable suggests a direct effect of GH on leptin production, metabolism, or clearance.  相似文献   
42.
We investigated the molecular mechanism of the glucose effect on the regulation of chondrogenesis. Exposure of chick wing bud mesenchymal cells to high concentrations of glucose stimulated chondrogenesis 2–fold to 2.5-fold without affecting cell proliferation. Glucose increased protein levels and the membrane translocation of protein kinase C alpha (PKC), leading to a reduction of extracellular signal-regulated kinase (ERK) phosphorylation. Phosphorylation of p38 was also increased in a PKC-independent manner by glucose treatment. Glucose also increased cell adhesion molecules such as fibronectin, integrin 1, and N-cadherin at early stages and then decreased these adhesion molecules at later stages of chondrogenesis. These alterations in protein level of adhesion molecules and in the phosphorylation of mitogen-activated protein kinases by glucose were blocked by inhibition of PKC or p38 but were synergistically increased by the inhibition of ERK. Therefore, high doses of glucose induce the down-regulation of ERK activity via PKC and the up-regulation of p38 and result in the stimulation of chondrogenesis of chick mesenchymal cells through modulating the expression of adhesion molecules.This work was supported by the Korea Research Foundation (KRF-2000-DP0352)  相似文献   
43.
Angiostatin is a potent anti-angiogenic protein. To examine the angiostatin-interacting proteins, we used the display-cloning method with a T7 phage library presenting human cDNAs. The specific T7 phage clone that bound to the immobilized angiostatin was isolated, and a novel gene encoding the displayed polypeptide on the isolated T7 phage was identified. The displayed angiostatin-binding sequence was expressed in E. coli as a soluble protein and purified to homogeneity. This novel angiostatin-binding region interacted specifically to angiostatin with a dissociation constant of 3.4 x 10(-7) M. A sequence analysis showed that the identified sequence was a part of the large ORF of 1,998 amino acids, whose function has not yet been characterized. A Northern analysis indicated that the gene containing the angiostatin-binding sequence was expressed differentially in the developmental stages or cell types.  相似文献   
44.
We have determined that a nodule-specific cDNA clone (GmCysP1), obtained from a soybean root nodule-specific EST pool, encodes cysteine proteinase. Its amino acid sequence homology, as well as the conservation of typical motifs and amino acid residues involved in active site formation, shows that GmCysP1 can be classified as a legumain (C13) family cysteine proteinase, belonging to clan CD. Moreover, based on its expression patterns,GmCysP1 is a nodule-specific cysteine proteinase gene that is possibly associated with nodule development or senescence. Our genomic Southern analysis also suggests thatGmCysP1 is a member of a multigene family. Therefore, we propose that GmCysP1 is the first to be identified as a nodule-specific and senescence-related cysteine proteinase that belongs to the legumain family from soybean.  相似文献   
45.
Lipopolysaccharide is strongly associated with septic shock, leading to multiple organ failure. It can activate monocytes and macrophages to release proinflammatory mediators such as tumor necrosis factor- (TNF-), interleukin-1 (IL-1), and nitric oxide (NO). The present experiments were designed to induce endotoxin shock by an intravenous injection ofKlebsiella pneumoniae lipopolysaccharide (LPS, 10 mg/kg) in conscious rats. Arterial pressure and heart rate (HR) were continuously monitored for 48 h after LPS administration. N-Acetyl-cysteine was used to study its effects on organ damage. Biochemical substances were measured to reflect organ functions. Biochemical factors included blood urea nitrogen (BUN), creatinine (Cre), lactic dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transferase (GOT), alanine transferase (GPT), TNF-, IL-1, methyl guanidine (MG), and nitrites/nitrates. LPS caused significant increases in blood BUN, Cre, LDH, CPK, GOT, GPT, TNF-, IL-1, MG levels, and HR, as well as a decrease in mean arterial pressure and an elevation of nitrites/nitrates. N-Acetylcysteine suppressed the release of TNF-, IL-1, and MG, but enhanced NO production. These actions ameliorate LPS-induced organ damage in conscious rats. The beneficial effects may suggest a potential chemopreventive effect of this compound in sepsis prevention and treatment.  相似文献   
46.
The locus ceruleus (LC) contains a high density of angiotensin II (All) receptors. The role of All receptors at the LC in genetic hypertension and organ function is unclear. Spontaneously hypertensive (SHR) rats and Wistar-Kyoto (WKY) rats were studied, and blood pressure of animals was measured using the tail-cuff method. Animals were decapitated and the heart weight (HW) and testicular weight (TW) of animals measured. All receptor binding was carried out by incubating the LC tissue sections with 200 pM [125I]-All receptor ligand, and measured using quantitative autoradiography. Results showed that the HW/BW ratio was significantly higher in SHR rats than WKY rats. However, the TW/BW ratio was higher in SHR rats than WKY rats only at two hypertensive stages, whereas All receptor binding capacity in the LC was also statistically higher in SHR rats than WKY rats. Results indicated that cardiac and testicular hypertrophies were related to higher All receptor binding in the LC of SHR rats, when compared with WKY rats. Interestingly, the literature shows that there is an LC-testes axis. In conclusion, this study indicated that All receptors in the LC are associated with genetic hypertension, and testicular weight could be a reasonable index for essential hypertension.  相似文献   
47.
Recently, we identified three types of non-mammalian gonadotropin-releasing hormone receptors (GnRHR) in the bullfrog (designated bfGnRHR-1-3), and a mammalian type-II GnRHR in green monkey cell lines (denoted gmGnRHR-2). All these receptors responded better to GnRH-II than GnRH-I, while mammalian type-I GnRHR showed greater sensitivity to GnRH-I than GnRH-II. In the present study, we designed new GnRH-II analogs and examined whether they activated or inhibited non-mammalian and mammalian type-II GnRHRs. [D-Ala6]GnRH-II, with D-Ala substituted for Gly6 in GnRH-II, increased inositol phosphate (IP) production in cells stably expressing non-mammalian GnRHRs more effectively than native GnRH-II. However, it exhibited lower activity for mammalian type-I GnRHR than GnRH-I itself. Trptorelix-1, a GnRH-II antagonist, inhibited GnRH-induced IP production in cells expressing non-mammalian GnRHRs more effectively than Cetrorelix, a GnRH-I antagonist. Trptorelix-1, however, had lower potency for mammalian type-I GnRHR than Cetrorelix. Ligand-receptor binding assays revealed that [D-Ala6]GnRH-II and Trptorelix-1 have higher affinities for non-mammalian GnRHRs but lower affinities for mammalian type-I GnRHR than GnRH-II and Cetrorelix, respectively. Moreover, [D-Ala6]GnRH-II and Trptorelix-1 had a higher affinity for gmGnRHR-2 than GnRH-II and Cetrorelix, respectively. These results indicate that [D-Ala6]GnRH-II and Trptorelix-1 are highly effective agonist and antagonist, respectively, for non-mammalian and type-II mammalian GnRHRs.  相似文献   
48.
CARP, ankrd-2/Arpp, and DARP, are three members of a conserved gene family, referred to here as MARPs (muscle ankyrin repeat proteins). The expression of MARPs is induced upon injury and hypertrophy (CARP), stretch or denervation (ankrd2/Arpp), and during recovery following starvation (DARP), suggesting that they are involved in muscle stress response pathways. Here, we show that MARP family members contain within their ankyrin repeat region a binding site for the myofibrillar elastic protein titin. Within the myofibril, MARPs, myopalladin, and the calpain protease p94 appear to be components of a titin N2A-based signaling complex. Ultrastructural studies demonstrated that all three endogenous MARP proteins co-localize with I-band titin N2A epitopes in adult heart muscle tissues. In cultured fetal rat cardiac myocytes, passive stretch induced differential distribution patterns of CARP and DARP: staining for both proteins was increased in the nucleus and at the I-band region of myofibrils, while DARP staining also increased at intercalated discs. We speculate that the myofibrillar MARPs are regulated by stretch, and that this links titin-N2A-based myofibrillar stress/strain signals to a MARP-based regulation of muscle gene expression.  相似文献   
49.
Modification of proteins by the covalent attachment of ubiquitin is a key regulatory mechanism of many cellular processes including protein degradation by the 26S proteasome. Deubiquitination, reversal of this modification, must also regulate the fate and function of ubiquitin-conjugated proteins. Deubiquitinating enzymes catalyze the removal of ubiquitin from ubiquitin-conjugated substrate proteins as well as from its precursor proteins. Deubiquitinating enzymes occupy the largest family of enzymes in the ubiquitin system, implying their diverse function in regulation of the ubiquitin-mediated pathways. Here we explore the diversity of deubiquitinating enzymes and their emerging roles as cellular regulators.  相似文献   
50.
A slowly growing microaerophilic Helicobacter strain was isolated from the ceca and fecal pellets of Korean wild mice (Mus musculus molossinus). This bacterial strain possessed a pair of nonsheathed bipolar flagella, was positive for urease, catalase and oxidase, and reduced nitrate to nitrite. It proved susceptible to nalidixic acid and resistant to cephalodine, and did not hydrolyze hippurate. On the basis of phenotypic characteristics and 16S rRNA gene sequence analysis, the isolate represents a new species of the genus Helicobacter, for which the name Helicobacter muricola sp. nov. is proposed; the type strain of the new species is w-06T.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号